Transient spine expansion and learning-induced plasticity in layer 1 primary motor cortex.
نویسندگان
چکیده
Experience-dependent regulation of synaptic strength in the horizontal connections in layer 1 of the primary motor cortex is likely to play an important role in motor learning. Dendritic spines, the primary sites of excitatory synapses in the brain, are known to change shape in response to various experimental stimuli. We used a rat motor learning model to examine connection strength via field recordings in slices and confocal imaging of labeled spines to explore changes induced solely by learning a simple motor task. We report that motor learning increases response size, while transiently occluding long-term potentiation (LTP) and increasing spine width in layer 1. This demonstrates learning-induced changes in behavior, synaptic responses, and structure in the same animal, suggesting that an LTP-like process in the motor cortex mediates the initial learning of a skilled task.
منابع مشابه
Biphasic plasticity of dendritic fields in layer V motor neurons in response to motor learning.
Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that advances through stages. An initial increment in spine formation is followed by pruning and maturation one week after training ended. A similar biphasic course was described for the size of the forelimb representation in M1. This study investigates the evolution of the dendritic archite...
متن کاملMotor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex
Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydr...
متن کاملSpine loss in primary somatosensory cortex during trace eyeblink conditioning.
Classical conditioning that involves mnemonic processing, that is, a "trace" period between conditioned and unconditioned stimulus, requires awareness of the association to be formed and is considered a simple model paradigm for declarative learning. Barrel cortex, the whisker representation of primary somatosensory cortex, is required for the learning of a tactile variant of trace eyeblink con...
متن کاملPyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines
The mammalian cerebral cortex is typically organized in six layers containing multiple types of neurons, with pyramidal neurons (PNs) being the most abundant. PNs in different cortical layers have distinct morphology, physiology and functional roles in neural circuits. Therefore, their development and synaptic plasticity may also differ. Using in vivo transcranial two-photon microscopy, we foll...
متن کاملStructural plasticity within the barrel cortex during initial phases of whisker-dependent learning.
We report learning-related structural plasticity in layer 1 branches of pyramidal neurons in the barrel cortex, a known site of sensorimotor integration. In mice learning an active, whisker-dependent object localization task, layer 2/3 neurons showed enhanced spine growth during initial skill acquisition that both preceded and predicted expert performance. Preexisting spines were stabilized and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 22 شماره
صفحات -
تاریخ انتشار 2008